足球竞彩网_365bet体育在线投注-【中国科学院】

图片

图片

?bersicht
Veranstaltungsart: Vorlesung + ?bung (Master)
Modulsignatur: INF-0093
Credits: 2 + 2 SWS, 5?LP
Turnus: Sommersemester, unregelm??ig??
Empfohlenes Semester:
ab 1. Semester
Prüfung:?Schriftliche Klausur, jedes Semester
Sprache: Deutsch, Vorlesungsmaterialien in Englisch

Inhalte

In the course of this lecture, students will learn how robots can estimate their state (e.g. their pose) in a probabilistic fashion, i.e. in the face of uncertainty.

?

The main focus of this lecture is on the?Bayes Filter?algorithm which enables robots to estimate their new state after executing a control and to incorporate sensor measurements to update their belief. Various flavors of the Bayes Filter such as the?Kalman Filter?and the?Particle Filter?will be discussed in detail .

?

Furthermore, students will get to know different ways to model robot motion and measuerments of various types of sensors.

?

The final chapters of the lecture will be on approaches to?robot localization, i.e. the problem of the robot having to determine its position on a given map of the environment. Also, the localization problem will be discussed for situations when the robot has to generate a map itself by?occupancy grid mapping?or?simultaneous localization and mapping?(SLAM) algorithms.

?

?bungen

Es erscheint w?chentlich ein ?bungsblatt zu den behandelten Vorlesungsinhalten. Jedes ?bungsblatt wird in der Globalübung?der folgenden Woche besprochen. Es gibt keine Abgabe / Korrektur von ?bungsbl?ttern.

?

Turnus

Achtung: In Zukunft wird Probabilistic Robotics nur unregelm??ig?im Sommersemester gelesen.

?

Literatur

  • Sebastian Thrun, Wolfram Burgard, Dieter Fox.?Probabilistic Robotics. MIT Press. (http://www.probabilistic-robotics.org/). Mandatory to read chapters 1 - 8

?

?

?

?

足球竞彩网_365bet体育在线投注-【中国科学院】