足球竞彩网_365bet体育在线投注-【中国科学院】

图片

图片

Decision Forests Spiral
? Universit?t Augsburg
Low-Level CNN Filters
http://cs231n.github.io/convolutional-networks/
?bersicht
Veranstaltungsart: Vorlesung + ?bung (Master)
Modulsignatur: INF-0092, INF-0316
Credits: 4 + 2 SWS, 8 LP
Turnus: Jedes Sommersemester
Empfohlenes Semester:
ab 1. Semester
Prüfung:?Schriftliche Klausur, jedes Semester
Sprache: Deutsch, Vorlesungsmaterialien in Englisch

Inhalte

This course addresses state-of-the-art computer vision algorithms that let computers see, learn, and understand image and video content. After being taught the required basics in machine learning, students will - accompanied by practical exercises - get to know the most promising techniques.

The topics of the course may be summarized as follows:

  • Machine learning foundations
  • Deep learning, with a focus on CNNs and current reference architectures
  • Data reduction (quantization, dimensionality reduction)
  • Traditional computer vision (hand-crafted features and algorithms)
  • CNN-based computer vision

The learned concepts will be illustrated by successful examples in practice. The accompanying exercises will contain some hands-on assignments. Towards the end of the course more advanced topics in object detection and object recognition will be addressed.

?

Hinweis: Diese Vorlesung ersetzt die frühere Vorlesung ?Multimedia II“, kann jedoch genauso eingebracht werden.

?

?bungen

Es erscheint w?chentlich ein ?bungsblatt zu den behandelten Vorlesungsinhalten. Jedes ?bungsblatt wird in der Globalübung?der folgenden Woche besprochen. Es gibt keine Abgabe / Korrektur von ?bungsbl?ttern.

?

?

Literatur

  • M. Mitchell.?Machine Learning. McGraw-Hill Science/Engineering/Math, 1997; Chapters 1-8; ( PDF)
  • Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. MIT Press, 2016, ISBN-13: 978-
    0262035613; Chapters 2-5 are a must read! ( PDF)
  • David A. Forsyth and Jean Ponce.?Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle River, New Jersey 07458.( PDF)

?

?

?

?

足球竞彩网_365bet体育在线投注-【中国科学院】