足球竞彩网_365bet体育在线投注-【中国科学院】

图片

图片

Pressemitteilung 17/24 - 06.02.2024

Hall-Effekt enthüllt verborgene Symmetrie in Spin-Eis

Unterschiedlicher Drehsinn magnetischer Strukturen elektrisch aufgedeckt

Augsburger Physikern gelingt die Unterscheidung von chiralen Ordnungen mit gleicher Magnetisierung aber unterschiedlichem Drehsinn mittels elektrischer Messungen bei tiefen Temperaturen. Dies ist relevant für die Grundlagenforschung komplexer Magnete und im Hinblick auf m?gliche Anwendungen für die magnetische Datenspeicherung. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature Physics ver?ffentlicht.

Anomaler Hall Effekt als Funktion des Magnetfelds B im Auf- und Abmagnetisieren (rote bzw. schwarze Linie). ? Universit?t Augsburg

Elektrische Str?me und das Auftreten magnetischer Kr?fte sind unmittelbar miteinander verknüpft. Ein stromdurchflossenes Kabel erzeugt ein ringf?rmiges Magnetfeld. Umgekehrt lenkt ein Magnetfeld die elektrisch geladenen Teilchen senkrecht zur Strom- und zur Magnetfeldrichtung ab. Dieses Ph?nomen hei?t Hall-Effekt, benannt nach seinem Entdecker Edwin Hall im 19. Jahrhundert. Mit ihm lassen sich die elektrischen und magnetischen Eigenschaften von Metallen nachweisen. Der ?normale“ Hall-Effekt erlaubt das Bestimmen von Ladungstr?ger-Konzentrationen und Beweglichkeiten. Ein zus?tzlicher ?anomaler“ Beitrag zum Hall-Effekt tritt in Magneten auf.

Am Institut für Physik der Universit?t Augsburg wurde nun entdeckt, dass dieser anomale Hall-Effekt verborgene Symmetrien aufdecken kann. ?Für Zust?nde mit gleicher Magnetisierung haben wir bei unseren Hall-Spannungsmessungen unterschiedliche Werte beobachtet. Das ist ein überraschendes Ergebnis“, erkl?rt Philipp Gegenwart, Professor für Experimentalphysik.

Rechts- und linksdrehende magnetische Muster

Die Untersuchungen wurden am magnetischen Metall HoAgGe durchgeführt, in welchem vor vier Jahren, ebenfalls am Lehrstuhl von Gegenwart, besonderes magnetisches Verhalten entdeckt wurde. Dieses Material zeichnet sich durch Dreieckskonfigurationen atomarer Elektronenspins der Holmium-Atome aus. Wie bei Dreiecksbeziehungen üblich, k?nnen nicht alle paarweisen Wechselwirkungen gleichzeitig vollst?ndig erfüllt werden, sodass sich ein (magnetisch) frustrierter Zustand ergibt. In diesem haben mehrere Spin-Konfigurationen pro Dreieck die gleiche Energie. Dieser Zustand wird Kagome-Spin-Eis genannt, da die Spins auf an Ecken miteinander verbundenen Dreiecken, wie bei geflochtenen japanischen ?Kagome“ -K?rben angeordnet sind und zudem ?hnliche Regeln wie bei gefrorenem Wasser, also Eis, die erlaubten Anordnungen der magnetischen Momente bestimmen.

Anders als bei einem normalen Magneten sind die magnetischen Momente in Kagome-Spineis nicht alle entlang einer Richtung ausgerichtet, sondern zeigen komplexe Muster mit unterschiedlicher Chiralit?t, d.h. unterschiedlichem Drehsinn. Diese Muster werden durch ein angelegtes Feld bei tiefen Temperaturen erzeugt und weisen jeweils Plateaus mit gebrochenzahligen Werten, wie 1/3 und 2/3 der Magnetisierung auf. Die Abbildung zeigt zwei solche Muster gleicher Energie mit jeweils 1/3 der S?ttigungsmagnetisierung.

Elektrische Messungen zeigen den Unterschied – m?gliche Anwendung zur Datenspeicherung

In der nun in Nature Physics publizierten Studie der Augsburger Arbeitsgruppe wurde der anomale Hall-Effekt systematisch bei tiefer Temperatur untersucht und analysiert. ?berraschenderweise wurden deutlich unterschiedliche Werte für die beiden Muster mit der 1/3 Magnetisierung beobachtet, erkennbar in der roten bzw. schwarzen Kurve der Grafik.

Die Modellierung der Daten zeigt, dass dies mit einer besonderen und verborgenen Symmetrieeigenschaft zu tun hat: um vom einen in das andere Muster zu gelangen, müssen eine 180°-Drehung und eine Verzerrungsumkehr kombiniert werden. Bei Streuung von Leitungselektronen an den beiden Mustern führt dies zu einer unterschiedlichen Krümmung der Phase der Wellenfunktionen und dies verursacht einen unterschiedlichen anomalen Hall-Effekt, trotz gleicher Energie und Magnetisierung.

Generell zeigt dies ein neues Potential von Messungen des anomalen Hall-Effekts in magnetisch frustrierten Metallen, um verborgene Symmetrien und Zust?nde mittels elektrischer Messungen aufzudecken. ?Dies k?nnte auch interessant im Hinblick auf permanente magnetische Datenspeicherung auf kleinstm?glicher atomarer Skala sein“, sagt Prof. Dr. Philipp Gegenwart. Voraussetzung hierfür sei aber eine lokale Adressierung und gezielte Schaltung des Drehsinns der Muster.

Weitere Informationen:

>> Die Ver?ffentlichung: K. Zhao, Y. Tokiwa, H. Chen und P. Gegenwart: Discrete degeneracies distinguished by the anomalous Hall effect in a metallic kagome ice compound, Nature Physics (2024) https://www.nature.com/articles/s41567-023-02307-w

>> Zur ?Kagome-Spin-Eis“-Studie 2020 (siehe /de/campusleben/neuigkeiten/2020/03/17/1749/)

Links: Foto des Hall-Effekt Experiments mit einem HoAgGe Einkristall, welcher mit dünnen Golddr?hten elektrisch kontaktiert wurde. Rechts: Anomaler Hall Effekt als Funktion des Magnetfelds B im Auf- und Abmagnetisieren (rote bzw. schwarze Linie). Die beiden unterschiedlichen Werte korrespondieren zu den gezeigten Anordnungen der magnetischen Momente mit rechts- (gelb) bzw. linksdrehenden (grün) Konfigurationen.

Wissenschaftlicher Kontakt

Lehrstuhlinhaber
Experimentalphysik VI

Startseite:

E-Mail:

Medienkontakt

Corina H?rning
Stellvertretende Pressesprecherin
Stabsstelle Kommunikation & Marketing

E-Mail:

足球竞彩网_365bet体育在线投注-【中国科学院】